Red Light Logo

Photodynamic therapy with 5-aminolevulinic acid: A new diagnostic, therapeutic, and surgical aid for neuroblastoma

Watanabe, Toshihiko Nishio, Yoshiaki Yamamoto, Yuki Shimizu, Takahiro Li, Xiao-Kang Okita, Hajime Kuroda, Tatsuo

Read more:

DOI/PMID/Link: 10.1016/j.jpedsurg.2022.02.028

Abstract

Background: 5-Aminolevulinic acid (ALA)-based photodynamic therapy (PDT) is widely used in cancer therapy because of the tumor-specific accumulation of photosensitizing protoporphyrin IX (PpIX). We aimed to assess the susceptibility of human neuroblastoma cell lines to ALA-PDT and determine the mechanism of PDT. Methods: We used four human neuroblastoma cell lines (GOTO, NB9, IMR32, and NB1) and a gastric cancer cell line (MKN45) as a positive control. Cells were treated with increasing concentrations of ALA, and the ALA-induced production of PpIX in tumor cells was quantified using fluorescence spectrophotometry. PDT photocytotoxicity was measured by exposing the cells to a 630-nm irradiation for 10 min, and apoptotic cells stained with phosphatidylserine (PS) and propidium iodide (PI) were detected through flow cytometry. Results: ALA cytotoxicity was not observed in any cell line. The intracellular concentration of PpIX increased in an ALA dose-dependent manner, and intracellular fluorescence of PpIX increased in a time-dependent manner. The viability of NB-1 cells treated with 250 μM 5-ALA rapidly decreased to 5%. Photocytotoxicity was observed in the following order: NB1, IMR32, NB-9, and GOTO. Photocytotoxicity was positively correlated with intracellular PpIX concentrations. PS+/PI- cells increased up to 21% after 12 h, and PS+/PI+ cells accounted for 35% of all cells after 24 h, which suggests that ALA-PDT induced apoptotic cell death. Conclusion: This study shows that neuroblastoma cell lines were susceptible to 5-ALA-PDT, resulting in persistent apoptotic cell death. Levels of evidence: N/A for basic study.
Year Published 2022
Country Japan
Rank Positive
Journal Journal of Pediatric Surgery
Primary Topic Whole Body
Secondary Topic Cancer
Tertiary Topic Photodynamic Therapy
Model Cell Culture
Wavelength (nm)
Complement/Comparison Aminolevulinic Acid