Red Light Logo

Inhibition of bacterial growth through LED (light-emitting diode) 465 and 630 nm: in vitro

de Oliveira Assuncao, Flavia Fernanda Nascimento, Erika Chaves, Lucas Hakme da Silva Alessandro Marcio Martinez, Roberto de Jesus Guirro, Rinaldo Roberto

Read more:

DOI/PMID/Link: 10.1007/s10103-022-03505-3

Abstract

Photobiomodulation has been used to inactivate bacterial growth, in different laser or LED protocols. Thus, the aim of this study was to verify the inhibition of Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli, in ATCC strains and bacteria collected from patients with skin burns, after irradiation with LED; 300 μl of saline solution with bacterial suspension was irradiated at a concentration of 0.5-0.63, by the McFarland scale, after five serial dilutions, with evaluation of pre- and post-irradiation pH and temperature control. The cultures were placed in a bacteriological incubator at 37 °C for 24 h for later counting of colony-forming units (CFU). Data were analyzed by Shapiro-Wilk tests and single-factor ANOVA, with Tukey post hoc (p < 0.05). Both wavelengths and energy densities tested showed inhibition of bacterial growth. The comparison of the irradiated groups (ATCC) with the control group showed the following: S. aureus and P. aeruginosa 465 nm (40 J/cm2) and 630 nm (50 J/cm2) and E. coli 465 nm (40 J/cm2) and 630 nm (30 J/cm2). Among the ATCC S. aureus groups, there was a difference for 630 nm (30 J/cm2) and 465 nm (30, 40, 50 J/cm2). The bacteria from the burned patients were S. aureus (30 and 50 J/cm2) and P. aeruginosa (50 J/cm2). We conclude that different bacterial strains were reduced into colony-forming units after LED irradiation.
Year Published 2022
Country Brazil
Rank Positive
Journal Lasers in Medical Science
Primary Topic Whole Body
Secondary Topic Wound Healing
Tertiary Topic Pathogenic Bacterial Load
Model Cell Culture
Wavelength (nm)
Complement/Comparison