Red Light Logo

A novel non-invasive strategy for low-level laser-induced cancer therapy by using new Ag/ZnO and Nd/ZnO functionalized reduced graphene oxide nanocomposites

Saeed Jafarirad Ebrahim Hammami Torghabe Seyed Hosseyn Rasta Roya Salehi

Read more:

DOI/PMID/Link: 10.1080/21691401.2018.1470523

Abstract

In the present research, an effective drug-free approach was developed to kill MCF7 breast cancer cells using low-level laser therapy (LLLT) combined with reduced graphene oxide (rGO)-based hybrid nanocomposites (NCs). Here, fruit extract of Rosa canina was used for the first time to obtain the rGO/ZnO, Ag-ZnO/rGO and Nd-ZnO/rGO NCs by green synthesis. Physico/photochemical properties of these NCs were evaluated using FTIR, XRD, Raman, XPS, SEM/EDX, UV-Vis, DLS and AFM. The potential of the as-synthesized NCs on ROS generating and antioxidant activity were assessed by DPPH. After optimizing the proper concentration of the NCs their anti-tumoral efficacy were evaluated by DAPI staining and MTT assay tests for laser therapy on MCF7 breast cancer cells. Interestingly, cell death was increased dramatically by increasing irradiation dose from 8-32 J/cm2 and then decreased by enhancing laser dose. The maximum amount of cell death is 50% which was observed in the presence of ZnO/rGO 20% by irradiation dose of 32 J/cm2. Furthermore, in comparison with 810 nm, 630 nm lasers were more effective in LLLT of MCF7 cells. The results show the potential of using rGO-based NCs in LLLT, which may be combined with other therapeutic approaches to assist our fight against cancer.
Year Published 2018
Country Iran
Rank Positive
Journal Artificial Cells, Nanomedicine, and Biotechnology
Primary Topic Whole Body
Secondary Topic Cancer
Tertiary Topic Novel Treatment
Model Cell Culture
Wavelength (nm)
Complement/Comparison